dplyr grouping for PKNCA
Usage
# S3 method for class 'PKNCAresults'
group_by(.data, ..., .add = FALSE, .drop = dplyr::group_by_drop_default(.data))
# S3 method for class 'PKNCAconc'
group_by(.data, ..., .add = FALSE, .drop = dplyr::group_by_drop_default(.data))
# S3 method for class 'PKNCAdose'
group_by(.data, ..., .add = FALSE, .drop = dplyr::group_by_drop_default(.data))
# S3 method for class 'PKNCAresults'
ungroup(x, ...)
# S3 method for class 'PKNCAconc'
ungroup(x, ...)
# S3 method for class 'PKNCAdose'
ungroup(x, ...)
Arguments
- .data
A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See Methods, below, for more details.
- ...
In
group_by()
, variables or computations to group by. Computations are always done on the ungrouped data frame. To perform computations on the grouped data, you need to use a separatemutate()
step before thegroup_by()
. Computations are not allowed innest_by()
. Inungroup()
, variables to remove from the grouping.- .add
When
FALSE
, the default,group_by()
will override existing groups. To add to the existing groups, use.add = TRUE
.This argument was previously called
add
, but that prevented creating a new grouping variable calledadd
, and conflicts with our naming conventions.- .drop
Drop groups formed by factor levels that don't appear in the data? The default is
TRUE
except when.data
has been previously grouped with.drop = FALSE
. Seegroup_by_drop_default()
for details.- x
A
tbl()
See also
Other dplyr verbs:
filter.PKNCAresults()
,
inner_join.PKNCAresults()
,
mutate.PKNCAresults()